
Steven Kirby Student Number: 160275779

Generation of Islands and Simulating
Climate Change

Using OpenGL

Steven Kirby

BSC Computer Science (Game Engineering)

Submitted: 03/05/2019

Wordcount: 14779

Pages: 100

Supervisor: Dr. Richard Davison

 P a g e | 1

Abstract

This dissertation graphically showcases the effect that climate change could have on the United

Kingdom (UK) due to rising sea levels; explores techniques used to render graphics in real time

using OpenGL and measures the performance of differing tessellation values, model sizes and

primitive sizes.

 P a g e | 2

Declaration

I declare that all writing and graphics in this dissertation are of my own work except where

stated or otherwise implied.

 P a g e | 3

Thanks to

Thank you to Dr. Richard Davison for the support and guidance that was provided throughout

the production of this simulation and dissertation.

I would also like to thank Richard for allowing me to use the codebase he has authored to teach

OpenGL in the graphics and games modules at Newcastle University as a base for my

dissertation

 P a g e | 4

Contents

Abstract ... 1

Declaration .. 2

Thanks to ... 3

Chapter 1: Introduction .. 6

1.1 Motivation and Rationale ... 6

1.2 Aim and Objectives ... 7

1.2.1 Aim .. 7

1.2.2 Objectives.. 7

1.3 Dissertation Structure ... 8

Chapter 2: Planning ... 9

2.1 Initial Plan ... 9

2.2 Updated Plan .. 11

Chapter 3: Research .. 13

3.1 OpenGL and GLSL .. 13

3.1.1 Languages and Toolkits ... 14

3.1.2 Alternatives ... 14

 ... 15

3.2 Noise Generation and Heightmaps ... 16

3.2.1 Perlin Noise ... 16

3.2.2 Heightmaps ... 17

3.3 Climate Change ... 19

3.3.1 Global Warming and CO2 Levels ... 19

3.3.2 Sea Level and its Consequence ... 21

3.4 Existing Work .. 26

Chapter 4: Implementation .. 28

4.1 Design .. 28

4.2 Resources .. 30

4.2.1 Island Maps ... 30

 P a g e | 5

4.2.2 Textures .. 32

4.2.3 Shaders .. 33

4.3 Programming .. 34

Chapter 5: Testing and Experimenting ... 51

5.1 Testing the Simulation .. 51

5.2 Experimenting ... 52

5.2.1 Planning the Experiments ... 53

5.2.2 Displaying the Results ... 53

Chapter 6: Results ... 57

6.1 Simple Experiments .. 57

6.1.1 Tessellation ... 58

6.1.2 Triangle Size .. 61

6.1.3 Grid Size .. 64

6.2 Advanced Experiments ... 67

Chapter 7: Evaluation .. 77

7.1 Meeting the Objectives ... 77

7.2 Software Engineering Process .. 78

7.2.1 Planning and Design .. 78

7.2.2 Implementation and Testing ... 79

Chapter 8: Conclusion ... 80

8.1 Overall Outcome ... 80

8.2 What I Learned .. 81

8.3 Future Work .. 83

References .. 85

Background Reading ... 87

Images Used .. 88

Appendix ... 90

 P a g e | 6

Chapter 1: Introduction

1.1 Motivation and Rationale

The primary motivation for this dissertation is to bring awareness to the potential ramifications

of climate change accelerated by human activity in the last century that has offset the balance

of the natural carbon cycle, effectively overloading the ecosystem and causing sea levels to rise.

This impact could be demonstrated using a real-time graphics simulation. This is a personal

motivation of mine; to learn graphics programming, explore graphics programming techniques

and impact on performance, using OpenGL and OpenGL Shader Language (GLSL).

Climate change causes damage to not only areas of human habitation, but also to the habitat of

vulnerable species such as the polar bear. Polar bears live on the sea ice, which is melting due

to the worlds rising temperatures, causing them to travel further or even lose access to their

main food source, seals, and in some cases, starve because of this. (National Geographic, Leahy, 2018)[1]

This dissertation however, is based around the effect of climate change on an island (the UK to

be specific) generated using OpenGL, and showcases these issues through a graphical

simulation of a rising sea level caused by melting glaciers.

Existing simulations

NASA has produced an interactive 2D map

showing the effect of sea levels rising up

to 6-metres, obtained from using still

images by the Centre for Remote Sensing

of Ice Sheets (CReSIS) which shows what

area of land would be covered by water.

This is shown in Figure 1 (right).

The original still pictures that NASA used Appendix 1 – Sea Level Rising are shown in the

appendices at the end of this dissertation.

NASA has also produced a 3D simulation of sea level rise, this is discussed in more detail later

on in Chapter 3: Research.

Figure 1: Inundation Of Water (Increase of 6 Metres)

 P a g e | 7

1.2 Aim and Objectives

The aim and objectives helped guide me through this dissertation and ensured that I was on

track for completion within the timescale and gave me goals to work towards.

1.2.1 Aim

The aim of the dissertation is as follows:

“To simulate the effects of climate change on a 3D generated model of an island using OpenGL”

This changed from an original aim of generating an archipelago, (collection of islands) using

Perlin noise early on in the dissertation.

1.2.2 Objectives

The objectives of the dissertation are as follows:

1. Estimate and present (via charts) predicted CO2 and Sea Levels in the future.

2. Research how Perlin noise and heightmaps could be used in rendering a 3D island and
its surrounding sea.

3. Render a realistic implementation of a 3D island using OpenGL and GLSL shaders.

4. Simulate rising sea levels, rendering a separate sea entity using OpenGL and GLSL
shaders.

5. Measure land mass loss depending on sea levels during the simulation.

6. Measure and compare the speed of initial generation and frame rates of the simulation
in progress at different detail levels.

The first objective became irrelevant to the simulation as I decided to focus on the sea level

rather than a time based simulation dependant on CO2 levels, there were a lot more factors

affecting global warming than just CO2 levels, such as Ozone, Nitrous Oxide and Water Vapour.

The fifth objective was unfeasible by the time I had attempted it. In part due to doing majority

of calculations on the shaders and the difficulty of returning data from these shaders.

Both of these objectives are discussed in more detail later in the dissertation.

 P a g e | 8

1.3 Dissertation Structure

Planning

A small chapter on the planning of the dissertation that guided me through the project

to ensure I was on track; this will give an insight into the original design and expected

implementation of the simulation.

Research

Any research and relevant information used to achieve the aim and objectives of the

dissertation are presented here, as well as any important data, resources or learning

materials that I have used.

Implementation

A detailed step-by-step process of how I implemented the simulation.

This chapter explains why I decided to implement it that way, any issues I may have

come across and how I went about fixing these issues.

Testing and Experimenting

Although testing was done during development using a code and fix process, this

chapter discusses how I tested the simulation after development had stopped.

This chapter also includes how I went about approaching experiments on the simulation

in order to establish tangible data to meet my objectives.

Results

The results of the simulation experiments, simple and advanced experiments are

presented graphically and the results observed via these graphs are discussed in detail.

Evaluation

The evaluation discusses the finished simulation in relation to the completion of the

objectives and aim of the dissertation, as well as the software engineering process.

Conclusion

The final chapter of the dissertation reflects on; the project as a whole, what I have

learnt from the project and what improvements or additions could be made to the

simulation in the future.

 P a g e | 9

Chapter 2: Planning

2.1 Initial Plan

This is the original plan that I set out for this dissertation and expected it to change as I

continued programming the simulation.

Figure 2: Initial Gantt Chart

 P a g e | 10

I created a Gantt chart to help plan the project and dissertation, using an online tool called

TeamGantt; this chart is shown in Figure 2 (above).

As can be seen in the Gantt chart and mentioned previously, I was originally going to generate

an archipelago using Perlin noise, this was changed relatively early on into development and

was altered, to suit a real life simulation of climate change instead, as Perlin noise is random,

this would not have worked for a real life simulation.

This required using a heightmap of the island instead; the updated Gantt chart in the next

section shows these changes.

 P a g e | 11

2.2 Updated Plan

I have updated the completion percentages as I progressed through the dissertation, adding or

removing tasks where necessary.

The updated Gantt chart, as at January 25th 2019, is shown in Figure 3 (below),

 Figure 3: Updated Gantt Chart

 P a g e | 12

By having an updated plan I could make sure that I was on track for finishing within the

timescale, the plan also included some contingency time to complete the dissertation by and

would have time If anything went wrong.

This time could also be used to proof read the dissertation further or fix any final issues with

the simulation before the demonstration.

Many of the tasks in the plan changed due to researching deeper into a graphics technique or a

change in the design.

I endeavoured not to change the design, however, if I did, it was usually in favour of making the

final simulation look more realistic, more accurate or to improve performance.

The plan did not change from this point onwards except to update progress hence I have not

included a more recent version of the plan.

 P a g e | 13

Chapter 3: Research

To achieve the best results with the simulation I chose a few topics to research, in both the

fields of graphics programming and climate change.

The background material I read increased my understanding of the graphics pipeline and

programming techniques that I could use for the simulation.

These research areas helped to enhance the simulation and improve its detail, I was also able to

improve the accuracy of the simulation with a greater understanding of climate change and its

effect on an island.

3.1 OpenGL and GLSL

OpenGL or Open Graphics Library is a library used for

producing graphics to the screen and allows the programmer

to interact with the hardware available to them such as the

Graphics Processing Unit (GPU) on the graphics card, monitor

and I/O devices.

GLSL is OpenGL’s shader language; the syntax is very similar to

that of the C programming language.

Shaders are the programmable part of the rendering pipeline

shown in Figure 4 (left). (Khronos.org, 2019)[2]

They are often used to create graphics for animated movies

and games by the film industry and games industry

respectively to create stunning graphics.

The rendering pipeline is a set of steps, which follow each

other to display graphics to the screen; some steps are

optional if their functionality is not needed (represented by a

broken border).

These shaders are what will allow me to exploit the graphics

card’s processing power; graphics cards are designed to work

on large blocks of data in parallel and suited for many of the

algorithms that graphics require to work efficiently.

Figure 4: OpenGL Rendering Pipeline

 P a g e | 14

3.1.1 Languages and Toolkits

As OpenGL is an Application-Programming Interface (API) rather than a specific programming

language, it can be used for practically any language with many libraries available.

Setting up an OpenGL capable window in itself can be quite complicated. Many libraries or

toolkits have been developed to ease this process; this includes several that are used

exclusively for creating just a window within which OpenGL can display images on.

Graphics Library Framework (GLFW) is one of the more recent libraries available.

https://www.opengl.org/resources/libraries/windowtoolkits/

There were a couple of issues getting OpenGL to run on my laptop and desktop computer as

they are both quite old, but after adjusting some of the settings and forcing the laptop and

desktop to use their dedicated graphics cards when executing the program, I was able to use

OpenGL 4.6, whereas the CPUs built in graphics processor in these machines could not as they

were limited to OpenGL 3.1 with no updates available.

3.1.2 Alternatives

OpenGL is a powerful library and lets you control almost everything, as you are working very

closely with the hardware.

Another option could have been to use a middleware engine such as Unity for this project; this

would have made producing the simulation much easier and quicker and would have produced

a more accurate simulation in the end. However, I wanted to learn the process that went into

the graphics pipeline and using Unity would have abstracted away from some of that process.

OpenGL is equivalent to DirectX by Microsoft, however where OpenGL has a big advantage, is

the ability for it to be used on multiple operating systems unlike DirectX, which is Windows

only.

One of the newer API to be released for graphics rendering is Vulkan, although no doubt very

powerful, I did not consider using it due to its scarcity of tutorials as with anything that’s

relatively new, but I would like to learn it in the future should the games industry pick it up.

The Graphics for Games module in the first semester provided a codebase which set up a lot of

the underlying framework for OpenGL, such as producing a window for us to render our

graphics on and has a lot of functions such as binding textures to shaders more easily and more

succinctly.

https://www.opengl.org/resources/libraries/windowtoolkits/

 P a g e | 15

The codebase uses C++ which is a common language used in the games industry and one I was

keen to use, I had also been using C++ in another module during the first semester,

Programming for Games.

As I had learnt a lot using this codebase during the module it seemed the best option to use this

for my dissertation rather than trying to roll my own version.

Figure 5 (above) shows the capability of OpenGL in creating detailed terrains with tessellation.

Figure 5: Example of Terrain Tessellation in OpenGL

 P a g e | 16

3.2 Noise Generation and Heightmaps

I researched noise generation algorithms and heightmaps to determine what would be the best

option for creating a realistic island.

There are several approaches to creating assets in graphics programming.

One approach could be to create every asset at the start and calling them when needed.

Another approach could be to create the assets on the fly, procedurally generating them, as

needed, using algorithms to determine the requirements of the new asset. This could involve

needing to add more terrain onto the edge of a plane as the camera moves towards it without

creating holes in the plane; one approach to this is to use Perlin Noise.

3.2.1 Perlin Noise

Noise generation algorithms introduce randomness whilst not being just ‘noise’, such as the

noise seen when tuning in an old television.

People are very good at detecting when something looks random, and noise on the television is

as random looking as it gets, despite being caused by radio waves and cosmic radiation and

therefore not random at all.

These algorithms work on smoothing out the random noise into a shape or structure that can

be discerned as a pattern despite still being random, ripples in water is a good example of what

a noise generation algorithm can do.

If this is applied to terrain in video games, where the user can see the result visually, the result

doesn’t look pleasing or represent a plausible terrain.

Depending on what the application of the noise is used for, will determine the amount of

manipulation the noise needs for it to look correct.

In the case of generating an island to accurately simulate climate change, the noise would need

to resemble an island that would be like existing islands on Earth. This would require a lot of

smoothing and multiple layers of noise to create the uneven terrains found on Earth.

There are also other uses for noise, including increasing the detail of a simple texture, such as

the grain of wood on a tree trunk by turning uniform circles into more natural age rings on a

tree stump or log. (Vandevenne, 2004)[3]

Further uses include but are not limited to, mimicking handwritten text or more producing a

procedural fire effect. (Flafla2.github.io, 2014)[4]

 P a g e | 17

3.2.2 Heightmaps

Heightmaps are usually grey-scale images and their use can range from texture details to an

entire island, archipelago or even the entire world. Heightmaps do not necessarily have to be

real islands or textures and could be created by an artist’s imagination rather than a satellite

image from space or photograph.

Lighter coloured pixels on a heightmap normally represent an area with higher elevation, as the

RGB (red, green, blue) values are higher, e.g. white would be 255,255,255 (1.0, 1.0, 1.0 in

OpenGL) and black would be 0, 0, 0 (0.0, 0.0, 0.0 in OpenGL).

So, it therefore makes the most sense that the lower areas are represented with darker pixels,

and areas of a single gradient are flat areas but could be either high or low.

As the picture is in greyscale, the RGB values are identical to one another, meaning only one of

the colour channels (red channel for example) would be needed to tell a height.

However, this means we can only represent 256 different heights using a standard 8-bit RGB

image, this can be dramatically increased by using a 24-bit RGB image using all 3 colour

channels, bringing the heights we can represent to a much more acceptable 16,777,216.
(En.wikipedia.org/wiki/Heightmap, 2019)[5]

If we wanted to, we could also use the alpha channel of RGBA (Red, Green, Blue, Alpha),

bringing this number to almost 4.3 billion heights that could be represented.

Depending on the required accuracy of the map we could choose the appropriate option.

For an example, consider the peak of Everest (highest point on earth) is approximately 8,850

metres at its summit and the Challenger Deep (lowest point on earth) is approximately 10,916

metres deep giving us a difference in height of 19,766 metres that might need to be

represented.

We could represent this per centimetre height, and would need 1,976,600 heights, so would

require the 24bit RGB image, and could represent an approximate maximum accuracy of 1/8th

of a centimetre or 1.25mm using this image to its full capacity.

Taking it an extreme step further, using the alpha channel we could represent every height in

the world to an approximate accuracy of 1/217th of a millimetre or 4.6 micrometres

(0.0046mm).

Of course, this information doesn’t have to be just heights, it could hold other data, such as the

texture to use on that point on the height map and just about any other possibility that could

be held using any unused colour channels, which is fine for a single pixel. However, the problem

then becomes the large amount of data the whole map would require.

 P a g e | 18

Considering the earths circumference as approximately 40,000 kilometres, a 40,000,000 x

40,000,000 pixel image (1 pixel/metre) using 16bits of 2 Colour channels (big enough to

represent heights of the world accurate to 1 metre) would result in a 2.84PB (petabyte) file,

which is massive in itself to store and would take an unfeasibly long time to do anything

computational upon, in a real-time graphics simulation.

There are also other uses for images that are very similar to heightmaps such as displacement

maps and normal maps.

Displacement maps can be used for texturing much like Perlin noise, except the use of

displacement maps does not produce a random looking result. Because of this it can be used

for creating an effect such as footprints in snow or fingerprints, these displacement maps can

be used for tessellation to create detailed terrain as shown in Figure 6 (below). (Widmark, 2012)[6]

Figure 6: Displacement Map Example (Detailed Terrain)

Normal maps are used for calculating correct lighting in graphics, they can be calculated and

produced using the normal of a primitive relative to a light source, or simply put, whether the

triangle is facing the light or away from it.

These can be calculated in real time, however, can use a lot of unnecessary processing power

and an image is much more efficient once produced and loaded. If the model were not static

the image would need to be recalculated each time it changed.

 P a g e | 19

3.3 Climate Change

Climate change is a change in behaviour of the weather and the effects of this, therefore

climate change encompasses glaciers melting due to global warming raising the earth’s surface

temperature.

Global warming causes climate change but is only one aspect of it.

Glaciers melting adds to the sea level by adding water volume that was once stored on land in

the form of ice, however, rising temperatures also cause the sea to expand; much like how

metal reacts to heat, by expanding. This in turn causes sea levels to rise.

3.3.1 Global Warming and CO2 Levels

Rising temperatures across the world is known as global warming and has a correlation with

CO2 levels; CO2 is a greenhouse gas but is only part of the greenhouse effect causing rising

temperatures.

Figure 7 (below) shows the greenhouse effect in simple terms. This is a good thing for earth in

moderation, without it the planet would be very cold, but too much and it becomes too hot.

Figure 7: The Greenhouse Effect

 P a g e | 20

Carbon Cycle

The carbon cycle is the exchange of CO2

between the atmosphere and earth.

There has been a natural exchange of CO2

for millions of years, most likely since life

began on earth, with the only contributing

natural catalyst of climate change being

solar fluctuations and volcanic eruptions.

Plant life and oceans absorb CO2 from the

atmosphere keeping natural CO2

emissions from causing climate change

too quickly.

Natural CO2 emissions are caused by human and animal

respiration and decomposition (What's Your Impact, 2018)[7], volcanoes erupting

and underground magma releasing CO2 through porous rocks and hot springs also add to the

atmosphere.

The graph in Figure 9 (below) shows a steep increase in CO2 emissions due to the burning of

fossil fuels by humans since the industrial revolution in the early 1800s, and has increased

heavily in the last 60 or so years.

Figure 8: Carbon Cycle

Figure 9: Fossil Fuel Emissions

 P a g e | 21

3.3.2 Sea Level and its Consequence

It is documented that a sea level rise of up to 80 metres could occur should all the ice on earth

melt entirely and make its way into the sea. (Poore, Tracey and Williams, 2019)[8]

It is predicted that in 2100 the sea level will have risen by 2 metres; this may not seem like a lot

but is enough to affect a lot of low laying coastal areas. (Cumming, 2019)[9]

Figure 10: Flooding image

Sea levels rising will cause areas that humans inhabit to flood, reducing the area in which we

can live safely and ultimately pushing us away from the coastline to higher elevations where the

sea level has not yet reached.

Areas of farmland and even fresh water drinking reserves could be affected causing a shortage

of fresh local food and potable water. Studies have shown that sea water can intrude up to 50%

more underground than above ground, affecting welling and other methods of obtaining water

for drinking (Scientific American, 2019)[10], this could mean we would need to import even more food,

adding to CO2 levels further. Below is an extract from the reference, humans settle close to

water, it is a resource, but also a danger.

“40 percent of world population lives less than 40 miles (60 kilometers)

 from the shoreline”

 P a g e | 22

The image in Figure 11 (below) is the Nile Delta and is under threat from rising sea levels.

As can be seen on the map, much of the area is below sea level or only a few metres above it,

the area provides Egypt with lots of resources and food. (Shenker, 2009)[11]

A lot of people live there, and the area is also steeped in ancient Egyptian history which is under

threat of being flooded should sea levels rise.

Figure 11 (above) was created using a tool by clicking on points on the map to show the

approximate elevation above sea level of that area. (Freemaptools.com, 2019)[12]

The images and graphs in Figure 12 (below) on the following page were obtained from a study

that explores the impact of sea levels rising upon developing country and goes very in depth.
(Dasgupta, Meisner and More, 2007)[13]

I have chosen to only show a selection of figures from the study that related to the Nile delta in

Egypt, specifically the effect on its population and agriculture.

Figure 11: Elevation Map (Nile Delta)

 P a g e | 23

Figure 12: Egypt Impact of Sea Level Rising

 P a g e | 24

Preventing Climate Change

“We are the first generation to know we are destroying our planet and the last one that
can do anything about it”

Preventing climate change altogether is not possible, but reducing its impact and stopping its

acceleration is, the information below is related to people’s awareness and how we can prevent

a climate change catastrophe.

Reducing greenhouse gas emissions is one way, but in order to counteract what has already

been done, we need to take action to reverse it, the main elimination of carbon dioxide is by

plants and trees, we need to plant more and stop deforestation.

Although it helps it cannot be the only solution to climate change, technology and science is

improving every year and can be used to help, bringing either awareness to the situation by up

to date studies or reducing CO2 emissions with cleaner more efficient energy sources.

Climate change is a trending topic at the moment, with documentaries and a relatively hot

Spring season; in 2009 the topic trended heavily on Google before dying off as shown in Figure

13 (below). The colours in the graph (red, orange and blue) relate to Global Warming, Climate

Change and Sea Level respectively as search topics.

Figure 13: Interest Graph (Climate change)

Inland countries and cities that are not at risk of the sea level rises affecting them, at least not

in the immediate term are simply not searching for these topics as much as coastal countries.

This can be seen from search trends by city, using Google topic search tool, Figure 14 (below).

Tanya Steele (Chief Executive, WWF)

 P a g e | 25

Although a big proportion of the population lives near to the coast, possibly biasing this data.

There are numerous cities that have large populations that do not reside by the coast and are

still not searching about climate change and sea levels.

Drastic measures may need to be taken in the future such as constructing costly sea defense

barriers; this, however, only delays the issue and does not solve global warming or the risk of

extinction to species such as the polar bear.

At this point in time, we may need to actually intervene using techniques such as air and sea

CO2 capture, whereby the CO2 is extracted and stored elsewhere so it is not released, this

however requires a lot of energy, so would need to use renewable energy sources such as wind,

solar and hydro to result in a net loss of CO2 being removed from the atmosphere. (Mulligan, Ellison

and Levin, 2018)[14]

Figure 14: City Search Trends

 P a g e | 26

3.4 Existing Work

As well as the graphic in Figure 1, there are several other works that I have come across relating

to sea levels and climate change.

NASA has a dedicated subdomain to climate change, (Climate.nasa.gov, 2019)[15] and have models of

earth with measurements such as CO2 levels and Sea Level Variation taken using satellites as

shown in Figure 15 (below).

One of the more interesting works they have done is a 3D simulation of Antarctica melting and

showing the sea level rise approximation for different cities of the world.

Figure 16 (below) is a screenshot of the simulation running; it predicts a 2m rise for London

over the next 500 years from Antarctica partially melting alone. (Vesl.jpl.nasa.gov, 2019)[16]

Figure 15: Satellite Measurements

Figure 16: Antarctica Simulation

 P a g e | 27

The simulation in Figure 17 (below) is very close to what I attempted to simulate, even though I

didn’t find this until I was much of the way through programming my simulation.

Positives

• Correlation and interactive experience for user, with Ice melting and the sea level rising
in top model, as well as showing the melting of each ice basin in the lower 2 models.

• Top model looks good graphically from a distance and sea transparency is good albeit a
little bit dark.

Negatives

• Limited regions that can be simulated, it would be better if able to upload a heightmap.

• No detailed texturing used, even when zooming in.

• Some of the heights are a little too steep and unnatural looking.

Overall the simulation (Sealevel.nasa.gov, 2019)[17] is very good and appears to be accurate, but could

be improved aesthetically, although the above points are my opinions only.

Figure 17: Sea Level Simulation

 P a g e | 28

Chapter 4: Implementation

I have separated this chapter into several sections in order to explain how I went about

implementing what I had researched about OpenGL, GLSL shaders and climate change.

4.1 Design

The design stage of the simulation was relatively simple and laid foundations for my approach

to implementing the ideas I had, using the researched material and techniques that I had learnt.

I decided on an approach that uses a separate sea entity, this could be manipulated

independently to the island and would be able to use the OpenGL depth test, rather than

attempting to use a shader to simulate the water rising and blending with the island.

A simple representation of the architecture is shown in Figure 18 (below). As I only edited a few

classes inside the codebase, of which there are numerous, I have not detailed each class within.

The shaders and textures I use are explained in further detail in Resources (4.2).

Figure 18: Simulation Architecture (Simple)

Sea Plane Island Plane

Main

Codebase

Shaders Textures

Outer Sea

Planes

Make Mesh

Timer

 P a g e | 29

Sea Plane

The sea is a simple plane of triangles that uses tessellation and a texture.

I decided to add a technique known as “Watertight Tessellation” (Bunnell, 2005)[18] as I wanted to

create more detail and smaller patches for tessellation of the sea around the island itself.

Surrounding this central plane would be patches to be tessellated to a lesser level, which would

save on the graphics processing power.

The sea would have a water texture only and originally be tessellated to include waves,

however when interacting with the island the waves created issues with clipping in the middle

of the island and weren’t necessary, so were removed.

Island Plane

The design originally planned on using Perlin noise in order to create a realistic archipelago or

set of islands, however, a short way into programming the simulation, I decided to focus on a

real-life scenario, more specifically, I would use a heightmap of a real island.

In this case, I chose to use the UK, but the code could be applied to any heightmap providing

other resources accompanying this map were available, in the case they were not available,

several lines of code would need to be removed or commented out.

The island has textures of grass, rock and snow to represent the island and its mountainous

areas.

To simulate erosion on the island, sand will replace the textures where the erosion took place.

 P a g e | 30

4.2 Resources

The following resources are what I used in order to simulate the effects of climate change on

the UK. The textures are used to enhance the look of the simulation, and the shaders that have

been used to render the results onto the screen.

4.2.1 Island Maps

Height Map

A detailed high-resolution 8bit greyscale map of the UK;

the light areas represent the higher elevations and the

dark areas represent the lower elevations.

Using this I am able, with shaders, to create a basic 3D

map of the UK with accurate elevation.

This image was obtained from imgur.com with no

obvious accreditation to an author and is shown in

Figure 19 (right).

Major Rivers Map

The rivers map is a stripped-down edit of several maps Appendix 2

– River Maps (pre-edit) which have been combined and touched up

to create the result shown in Figure 20 (right).

Having rivers on the simulation will show where the main rivers

are flowing in the UK and show how sea levels rising will interact

with them.

Unfortunately, I was unable to find an appropriate map that had

the rivers of Ireland, as I had to ensure they lined up with the

other maps in terms of scale and skew, the Scotland, England and

Wales rivers needed editing to ensure they lined up as accurately

as possible.

Figure 19: Height Map

Figure 20: River Map Edit

 P a g e | 31

Distance from Coast Map

A very simple map I created using Photoshop by editing

the original UK heightmap shown in Figure 19 (above), to

ensure a perfect match. This map enables me to see the

coastal areas in GLSL by utilizing the red channel in RGB.

The lower red channel value on the coastal areas

represent a lesser resistance to the erosion and sea level

aspect of the simulation when the sea level rises.

The most likely areas to be affected by rising sea levels

would be the coasts. Water flows to find the lowest point

but can’t get to the lowest points if there are higher

elevations surrounding that area hence the need for this

map.

Ground Strength Map

The ground strength map shows the least permeable ground areas

and as such will be the last parts to erode. This will be more

relevant for a longer time span, however, will still have a small

effect on near future erosion, and therefore I have included it.

There is a very dark green area known as “The Wash” which runs

from Skegness on the north side, to Hunstanton on the south. This

area is mostly made up of sedimentary material deposits and has

caused once coastal towns such as King’s Lynn to be further inland

than they used to be. (En.wikipedia.org, 2019)[19]

I was unable to find a map that included the ground strength of

Ireland.

Figure 21: Distance From Coast Map

Figure 22: Ground Strength Map

 P a g e | 32

Population Map

The population map shows the hot spots of human habitation in the

UK. As can be expected, this shows the areas of major cities and the

distinct lack of habitation in the highest elevation areas (magenta).

The colours used in Figure 23 (right) would not work well in my

simulation, so I have edited this image Appendix 3 –Population Map

(Greyscale) using photoshop, setting each colour to a degree of

lightness so the differences in population are correct in the now

greyscale image, the most populous areas are red, followed by

yellow, and light blue, the least populous areas being dark blue and

magenta, these are now light to dark respectively.

The reason I added this is to show what the level of population is in

the areas that are under threat of sea levels rising.

This can be toggled on and off during the simulation.

4.2.2 Textures

The textures that I used for the simulation are

few in numbers; however, they

provide a relatively pleasing look to

the simulation.

The snow texture is based on

elevation using the heightmap. As

mentioned previously, this is set in

the fragment shader and everything

below this elevation is grass. The rock texture uses the ground hardness map to determine

where it should be used.

The rock and grass texture are blended together to provide a smooth transition between the

heights rather than a harsh split of one texture then the next.

The sand texture replaces other textures that are inundated by water as the sea level rises

during the simulation; this is usually the grass texture that is being replaced due to the erosion

aspects mentioned previously.

The water texture is semi-transparent and has an alpha channel. As the sea level rises, the

texture blends with the textures below it, due to it being a separate entity.

Figure 23: Population Map

Figure 24: Textures used in simulation (Snow, Rock, Grass, Sand, Water)

 P a g e | 33

4.2.3 Shaders

The shaders used in the programming of the simulation included multiples of the following

types of shaders:

• Vertex Shaders

• Fragment Shaders

• Tessellation Control Shaders

• Tessellation Evaluation Shaders

Vertex Shaders

The vertex shader can be used for a few applications, but not in this case, the vertex shader is

the only mandatory shader, even if it just passes data on without doing anything.

Fragment Shaders

The fragment shader is used to calculate the colour of each fragment on the model, there may

be multiple fragments per pixel but would not be multiple pixels per fragment.

The reason for this is due to being able to have two models behind one another and have

transparency, which would need to calculate a colour based on this blending of colours.

Tessellation Control Shaders

The tessellation control shader is used to tell the GPU the number of triangles to split the patch

into as well as how to do so that best fits the application of tessellation. And can be used to

match the correct number of triangles and size to a neighboring plane, tessellation is optional

and subsequently so are the shaders.

Tessellation Evaluation Shaders

The tessellation evaluation shader performs the splitting of the patch and is a mandatory part

of tessellation if wishing to use tessellation, whereas the tessellation control shader is optional,

as the vertex shader values would be used if the tessellation control shader were not present.

 P a g e | 34

4.3 Programming

Quad Plane

To shape how the simulation would look I started by rendering a plane with 2 triangles (known

as a quad) and rotated it 90 degrees so that it would lay flat. This would be the base for the

island and a second similar plane the base for the sea.

They are coloured appropriately in green and blue by passing an RGBA value to the renderer.

Adding the second sea plane too close to the island plane caused Z-Fighting.

Figure 25: Filled Quad Figure 26: Wireframe Quad

Figure 27: Z-Fighting Planes

 P a g e | 35

Z-Fighting is where the GPU doesn’t know which colour should be displayed due to identical or

very similar Z-Values. This was rectified by increasing the distance between the planes, but is

not a good solution, as the sea will clip with the island during simulation.

I also halved the size of the island plane at this point to surround the island with sea on all

sides.

Camera and Controls

The camera was an important aspect of the simulation to complete early on in order to debug

any issues I was having, by being able to inspect the island from different angles and ensure

that any changes being made looked good from both a distance and up close.

I already had the wireframe toggle added at this point, alongside alpha blending toggles and

depth toggles. These two latter toggles were removed however as they are set in the code.

The keyboard controls I used were as follows:

• WASD to move the X-axis and Y-axis

• Q and Z to zoom in and out using the Z-axis

• F to toggle the Wireframe

• P and L to increase and decrease island tessellation (added later)

• O and K to increase and decrease sea tessellation (added later)

The mouse controls I used were as follows:

• Left click and drag
o (Left/Right) to change the yaw
o (Up/Down) to change the pitch

• Scroll wheel to zoom in and out using z-axis

Figure 28: Half size, No Z-Fighting (Filled) Figure 29: Half size, No Z-Fighting (Wireframe)

 P a g e | 36

Technically the camera doesn’t actually move in OpenGL, there is no such thing as a camera

object as such, but what it does do is move the scene the opposite way of what we would

regard the camera moving, however this isn’t entirely accurate, say we had a multiplayer game,

we couldn’t all be moving the world around at the same time, that would cause chaos, what is

really happening is the view of the world is changing, world coordinates stay the same, and a

character may be placed on that world in different locations as they move. (Overvoorde, 2012)[20]

To program the controls, I put them inside a while loop that runs until the simulation closes,

this would check if any of the keys or mouse buttons had been pressed or held down depending

on the appropriate need.

If the framerate was extremely low, sometimes a key press may be missed as it was being

checked during the loop.

Heightmap

Adding the heightmap to the plane using the code shown in Appendix 4 –Two Triangle Quad Planes

Code, gives us a black background and tints the greyscale texture a green colour due to the

original plane being green. This still allows us to see the shades representing the heights.

To remove the black background, I added code to the fragment shader to discard any fragments

that were black or close to black.

From a distance this looks ok and could even be mistaken for 3D, however on closer inspection,

it is just a flat image on the flat plane.

Figure 30: Island Texture Added Figure 31: Black Background Removed

 P a g e | 37

Figure 32: Flat Surface

Tessellation

To use tessellation and control its level, I needed both a Tessellation Control Shader (TCS) and a

Tessellation Evaluation Shader (TES). The code used in these shaders is adapted from the

shaders used in the graphics module.

I needed to change the primitive type to a patch rather than the triangles I was using previously

a patch does not necessarily have to be any specific shape although I chose to use 4 vertices for

the patch to cover the quad I had used for the plane.

Tessellating this singular patch to the maximum value of 64, for both inner and outer levels in

the TCS gave me the below result, this does not look all that different to the original pre-

tessellation result, but you can see slight variation in height.

Figure 33: Maximum Tessellation of a Quad (Filled)

 P a g e | 38

As the simulation needed greater height detail than what the maximum tessellation can

provide, I needed to increase the amount of patches that the texture covered, this would allow

me to increase the amount of triangles inside the model and therefore the amount of detail

and steps in heights that could be used.

Grid of Quads

I recreated the plane with a grid of quads, using the sea first; I achieved this by using a nested-

for loop (a loop within a loop) with rows and columns, there was an issue using this approach

when reaching the end of the columns, it was stretching the triangle from the end on the right

to begin a new row on the left.

To fix this I had to reverse the loop every other row. Appendix 5 – Grid of Quads Code

Figure 36 (above - right) shows the resulting fix after changing the code, this would mean

textures wouldn’t be distorted and stretched across the plane and was important to correct.

Figure 34: Maximum Tessellation of a Quad (Wireframe)

Figure 35: Grid Of Quads (Incorrect) Figure 36: Grid Of Quads (Correct)

 P a g e | 39

Figure 37 (below) shows the order in which the vertices are being placed using this code with a

triangle strip.

I made the size of each quad a variable so that the detail could be changed easily which is good

practice instead of having “magic numbers” about, being able to change it easily would allow

me to see the differences between the CPU and the GPU quickly in experimenting later.

Calculating the (U, V) coordinates

The texture coordinates needed to line up for several reasons, the main reason being if they did

not line up with the neighboring patch than the island would be a mess of different parts of the

texture.

The second reason being that the tessellation of the patches in the tessellation evaluation stage

uses the heightmap to set the z-axis of the vertices that have been created, causing tearing

between mismatched z values of the edges on a tessellated patch.

In order to correctly calculate the coordinates for each patch, I had to divide the (U, V)

coordinates between the number of patches; this was a simple calculation (1.0/number of

patches) as the (U, V) coordinates range from 0.0 to 1.0.

The heightmap could not repeat hence why the calculation never allows a patch to exceed 1.0,

however, the textures that I wanted to use on the island would need to repeat, and allowing

the (U, V) coordinate to exceed 1.0 allows the repeating of the textures. (Learnopengl.com, 2019)

Start

End

Figure 37: Triangle Strip Vertices Order

 P a g e | 40

When exceeding 1.0, depending on the OpenGL setting, this could either:

Loop back to 0.0 in the case of GL_REPEAT, effectively ignoring the integer part of the

(U, V) coordinate and is the default for OpenGL.

Decrease from 1.0 down to 0.0 with GL_MIRRORED_REPEAT, in which the coordinates

then increase back up to 1.0 and so on.

GL_CLAMP_TO_EDGE uses the minimum or maximum values of the coordinates until

the edge of the model once the texture would normally repeat. This results in a

stretched appearance.

GL_CLAMP_TO_BORDER has a user specified colour surrounding the texture up to the

edge of the model.

Due to these options not allowing the repetition of the texture, they aren’t appropriate to use

for the island plane textures (grass, rock, snow, sand) to achieve the result I was looking for so I

used a GL_REPEAT, with GL_MIRRORED_REPEAT the repeat was more obvious and looked

slightly odd.

Figures 38 and 39 (below) show the difference between these options and the more obvious

artifacts of the mirrored option, the same areas for each picture are circled in red for easy

comparison.

Figure 38: GL_REPEAT Figure 39: GL_MIRRORED_REPEAT

 P a g e | 41

Adding textures

To add the textures, I needed to bind the textures to their own position in the shader so that

they could be used within the fragment shader.

The fragment shader is called only once per fragment so the order of checks and calculations is

important in order to decide what colour should be used for that fragment.

This value can be added to or taken away from until the end of the shader where it is finally

sent to be rasterized.

Below is the result of using a texture dependent on heights using the heightmap, where the red

value from the heightmap was used as the world height variable at the start of the shader.

Using a different texture dependent on the heightmap value causes this very sharp edge to the

texture where they change as can be seen in Figure 40 (above left).

This did not look good and needed changing; also, due to the texture coordinates being

mapped one to one on the simulation, the rock grass texture has a vast amount of different

detailing on it and is stretched, this should not be visible from this distance, in order to look

correct it should be less visible and more uniform in colour for the entire area.

To fix this, I multiplied the texture IN coordinate by a value, depending how small the texture

needs to be, the higher this value was Appendix 6 – Fragment Shader Code (Lines 46-50), this

produced a better result but was still not quite the result I was going for.

Figure 41: one to one Rock and Grass Texture Figure 40: Sharp Texture Changes (Zoomed in)

 P a g e | 42

Figure 42 (above) is an improvement but the textures were still blocky, and the rock was

obviously a repeated texture as can be seen in Figure 43 (below).

Figure 43: Repeated Textures Obvious

To fix this, and get the look that I was going for, I would need to blend the textures with one

another. There was also a bug with the grass in this image, this is fixed, and the result shown in

the next section in Figure 44 (below left).

Figure 42: Multiplied Texture IN.Position Values (Result)

 P a g e | 43

Blending Textures

Blending the textures was a process achieved by mixing the colours together in the fragment

shader.

I also at this point decided that the ground hardness map should dictate where the rock

textures were being blended into the grass texture, this mostly lined up with the hilly areas of

the height map so worked well.

As can be seen in Figure 44 (below left), the textures don’t look right, they should not be this

defined at this distance.

This was fixed by using a technique called mipmapping, the premise behind mipmapping is a

series of progressively smaller images, each less detailed than the previous. These are used

dependent on how far from the camera the model is, creating a smoother look to the texture.

Adding mipmapping to both the grass texture and the rock textures gave the smoother result I

was looking for in Figure 45 (above right).

Figure 44: Grainy Textures Figure 45: Mipmapping Added

 P a g e | 44

Sea level and Sea texture

The sea level needed to rise and drop, the user can change this in real time by increasing and

decreasing the level as the simulation is running, using the up-arrow key and down arrow key.

As the sea level is increasing, the separate sea entity rises above the lower elevations of the

island model. As depth testing is enabled, this would correctly show on top of the island model

and is the desired effect I was after.

A separate vertex shader for the sea was used as this set the z-axis value for the sea entity, this

took in a uniform float, meaning it is accessible by every shader.

The z-axis value is the negative of sea level as in OpenGL the z-axis is lower the further away

from the origin it is, and as the sea would effectively be rising past the origin towards the

camera it needed to be negative whilst keeping the sea level variable positive to convert this

value into metres.

It was important that textures used for the sea, could tile well, especially for the sea, being a

flat plane with no mountains and lack of blending any tiling was obvious as is shown in Figure

46 (below), this was due to darker edges of the texture, so the texture was changed to a tile-

able texture.

The watertight tessellation mentioned earlier connects the middle sea section with the outer

sea sections using two tessellation shaders, one for the outer sections and one for the inner,

Appendix 8 – Sea Tessellation Shader Code, the outer version simply just divides the tessellation

Figure 46: Non Tiling Sea Texture

 P a g e | 45

inner levels by 2 but is otherwise unchanged, the result of this is shown in Figures 47,48,49 and

50 (below).

We can see that as the level of tessellation increases in the sea plane, triangles inside of each

patch on the outer sea section changes.

Inside the patch triangles change shape and size in order to match up with the triangle edges,

this is needed for both the adjacent outer sea section patches and also for the inner sea section

patches as tessellation increases.

Figure 47: Watertight Tessellation (Level 1) Figure 48: Watertight Tessellation (Level 2)

Figure 49: Watertight Tessellation (Level 4) Figure 50: Watertight Tessellation (Level 8)

 P a g e | 46

Erosion

To try and simulate basic erosion I used the distance from coast map I had created alongside

the ground hardness and heightmaps.

To use these, I had them have a percentage that added up together to 100% and depending

whether the sea level was above this added value would decide if the texture would turn into

the sand texture.

Figures 51 and 52 (above) use a 1% effect and 5% effect respectively for the distance from coast

map, the change is subtle but you can see the 5% image is a little bit smoother and filled in than

the 1% image, with a 0% effect the sand would be under all of the water that can be seen on

these images.

Another aspect of the erosion is the hardness map, which can be seen here (circled in red), it

does not erode the rock area but is inundated by water, this is done in the fragment shader and

can be seen in Appendix 7 – Updated Fragment Shader Code.

Figure 51: 1% Distance to Coast Effect Figure 52: 5% Distance to Coast Effect

Figure 53: 15% Hardness Effect

 P a g e | 47

Land Loss

Attempting to calculate the land loss and return this value to the CPU with the approach that I

took using the shaders to do the calculations was not an easy process and as such I did not

accomplish this objective.

The rendering pipeline is generally a one-way process, information goes in, the rendered image

comes out and is displayed on screen, information isn’t expected to be passed back to the CPU

in this manner.

Population overlay

Adding the population map shows the areas of

high habitation, it is blended into other

textures.

I needed to reduce the green and blue colour of

each fragment as the population was not very

clear and blended into the island too much.

I decided to reduce them in line with how

strong the population was, and the result

worked out quite well.

The overlay can be toggled and doesn’t seem to

affect performance of the simulation whether it

is on, or off.

Figure 54: Population Map Overlay

 P a g e | 48

Render Times and FPS

The render time is recorded using an adapted timer (Ramónster, 2019), this timer starts before any

setup code runs and ends just before the render while loop, this captures the time it takes from

starting the program to rendering an image in the window.

Another timer then starts inside the loop to capture each frame render time, this render time is

in milliseconds (ms) and is converted to frames per second (FPS) by simply doing 1000/render

time (ms).

These values are rendered on screen for the user to see, this is displayed every second using a

variable called delta time, each time the loop runs, the new render time is added to the delta

time.

When delta time exceeds 1 second the current render time is saved and displayed to the user,

without this, the times would be unreadable, as it would be changing too fast.

What the user is actually seeing is just a snapshot when delta time exceeds the 1 second time,

after this is saved and displayed, delta time is reduced by 1 second exactly, not reset to 0.0, as

leaving the left-over time will giving a more accurate timing.

Recording the data

For the simple experiments, the frame render time was recorded, simply outputting the times

to a text file using an output file stream and overwriting the file each time.

In order to compare the data for the more advanced experiments, I needed to adapt the output

file to resemble a CSV file to use within Excel.

All relevant variables are now recorded for analysis later and can be recorded without having to

restart the program; this is explained more in the Chapter 6: Results.

 P a g e | 49

Final Tweaks

One of the final tweaks that I added to improve the look of the simulation, was to add

mipmapping to the heightmap itself, I also considered bilinear filtering.

Both techniques reduced the steep edges of the mountainous areas and made the coastal

edges a little bit smoother. This can be seen in Figures 55, 56 and 57 (below).

Figure 55: Mipmapping Enabled

Figure 56: No Mipmapping or Bilinear Filtering.

 P a g e | 50

Figure 57: Bilinear Filtering Enabled

 P a g e | 51

Chapter 5: Testing and Experimenting

5.1 Testing the Simulation

I needed to test the program so I could be sure the data I was comparing was as accurate as

possible. By fully testing each aspect of the simulation, I could demo the program reliably

without needing constant supervision, in case the program crashed for example.

Test Plan

I created a Test Plan Appendix 9 – Test Plan to keep track of what I had tested, and to ensure that

everything that needed to be covered, was, and worked correctly.

The test plan is very simple, but covered the major aspects of the simulation, I was usually

testing whilst I was coding, as graphics programming can be very unforgiving.

Code and Fix

Code and Fix is normally a frowned upon approach of programming which has little to no

planning or design involved, this was not entirely true for me as I had planned the architecture

of the simulation and knew what I wanted the result to look like.

This however didn’t stop me coming across a design flaw when it came down to measuring the

land loss, as mentioned previously.

Being new to graphics programming, I found this was the easiest way for me to learn mistakes

that I was making, as I was making them.

I feel that I have developed a reliable simulation that is unlikely to crash randomly or produce

any unexpected graphics issues during demonstration or general use.

 P a g e | 52

5.2 Experimenting

To achieve the data that I wanted to compare and visualize, I used a variety of experiments.

As mentioned in Chapter 4: Implementation, I recorded the time in milliseconds that it takes to

render each frame (ms/frame), written to a file every second. I then transferred this data into

an Excel spreadsheet, removing any obvious outliers, before finally calculating an average, to

ensure that the average was as accurate as possible.

To achieve a stable frame rate and keep the results consistent, I used a full-size desktop with

adequate specifications and most importantly could keep the temperatures stable to prevent

CPU or GPU throttling that is commonly experienced on laptops, as they cannot dissipate the

heat as efficiently as a desktop.

The important specifications for the system used in testing were as follows:

 CPU: Intel i5 – 2500K (Sandy Bridge) – Not Overclocked (OpenGL 3.1)

 GPU: NVidia GTX 560-Ti (448 core) – Not Overclocked (OpenGL 4.6) – V-Sync disabled

 Ram: Corsair Vengeance 16GB DDR3 1600MHz

 Monitor: 1080p 28inch Acer 60hz

 Operating System: Windows 7 Ultimate

 Storage: 120GB SATA SSD

I also monitored CPU temperatures and GPU temperatures using Open Hardware Monitor
(Möller, 2019)[21]

 to see the workload of the GPU, ensure neither the CPU and GPU were getting

too hot and ensure it wasn’t affecting the performance; thus the accuracy of the results.

The data this monitoring can provide could be used in itself to check performance of the

simulation but as there were other programs running in the background, using Excel, using

Notepad++ to record the times as I was experimenting, would not be accurate and as such only

used it to ensure no throttling was occurring.

Disabling V-Sync (Vertical-Sync) on the graphics card was very important for testing as V-Sync

limits the frame rate to 60FPS, and can go no higher, this resulted in a minimum frame render

time of 16ms, which was not appropriate for my simulation which as initial tests show, can run

at approximately 0.4ms frame render time. This is a big difference from 16ms and would not

allow me to see any changes at these low times if it was limited.

 P a g e | 53

5.2.1 Planning the Experiments

Simple Experiments

I used tables of variables that could change the detail and performance of the simulation; these

tables Appendix 10 – Experiment Tables provided a structure to the experiments, covering the

simple bases and allowed me to keep track of the results easily by numbering the tests.

Advanced Experiments

I then decided it would be best after doing the simple experiments to change the information

that was being recorded in a comma separated CSV style file to encompass more data, the extra

data on top of the time taken to render the frame now included:

• X, Y, Z - axis positions

• Pitch and Yaw

• Sea level

• Tessellation levels

• Wireframe mode (On/Off)

• Grid Size

• Triangle Size

This data was recorded per second like before, would allow me to use the simulation as

normal, changing variables as the simulation ran where possible or changing the setup values

such as grid size or triangle size, which could not be changed during the running of the program

and would require a restart.

Using Excel, I created graphs to see if there were any correlations in the data, using this big data

approach sped up the experimenting process and would show any correlation between the

time taken to render the frame and any of the variables that had changed.

5.2.2 Displaying the Results

In order to easily read the information gained from the results of these experiments I have

displayed most of the results as line graphs, radars or other visual formats, these results are

discussed in Results and Evaluation (Chapter 6).

 P a g e | 54

Displaying the data in a visual format enables me to see if there are any correlations between

the variables and the time taken to render the frame.

If there was an apparent result but some scenarios were not tested and were missing data in

the graph, I could then manipulate the use of the simulation, appending to the file to check if

this was indeed the case by testing the theory out further on only the missing data.

An example of this could be:

Apparent results:

Having a lower Z-axis (zoomed out) causes time taken to render frame to

increase more than tessellation did.

Missing Data:

High tessellation values at high Z-axis values (zoomed in).

Course of action:

Run simulation and increase tessellation values whilst zoomed in to the

simulation.

Actual results:

The Graph now shows that it was in fact the tessellation values affecting the

time taken to render the frame more than the Z-axis values.

During testing I noticed that a function in the codebase that allowed me to display text on

screen, was causing a big performance decrease and affecting the render time.

Figure 58: Rendering with Text

 P a g e | 55

The render time was not a uniform increase, which would have been acceptable for use while

doing my experiments. Instead rather, it created a minimum render time depending on the

amount of text that was being used, at approximately 0.4ms per line of text.

Once exceeding this minimum render time, depending on the amount of lines used, did not

increase the render time, causing results of the experiments to be very inaccurate.

The picture above does not show it very clearly, but the debug text information causes the

render time to be approximately 8.7ms, the green section of the render times is with the extra

text showing. The red area is when this extra text is not showing and as can be seen the time

doesn’t increase.

I decided to comment out all text being displayed to the screen whilst experimenting, however,

the text will be displayed during the demonstration, as the FPS is useful when not analyzing the

data.

Figure 59: Render Time Not Affected

 P a g e | 56

After this was removed the minimum time taken to render a frame reduced from 1.6ms to

0.36ms as shown in Figure 60 (below).

Figure 60: Rendering without Text

 P a g e | 57

Chapter 6: Results

This chapter shows, in detail, a comparison of the variables in the simulation, how changing

them affects the performance of the simulation and shows the results visually in graphical

formats most appropriate to the experiments.

6.1 Simple Experiments

Below is the idle graph showing temperatures and memory use before these experiments, this

is the baseline in which the computer has the programs needed open ready to use, these

programs were limited to Excel, Notepad++, Visual Studio 17, Open Hardware Monitoring and

Snipping tool. Minimized where appropriate with exception to Visual Studio 17 as this was what

I was using to time the experiments and ensure each had at least 1 minute of run time after the

setup time.

The graph moves from right to left and in this case is a 10-minute window, I kept track of CPU

and GPU temperatures, Memory and GPU memory, (from top to bottom respectively).

Default Variables used in the simple experiments below can be found in Appendix 10 –

Experiment Tables.

Figure 61: Idle Temperature and Memory Use Graph

 P a g e | 58

6.1.1 Tessellation

The graphs below show the result of increasing the tessellation of both the sea and island

planes, the other variable’s default values are used and remain the same throughout the

experiment.

This graph and other tests with graphs similar were produced using the data recorded per

second and recorded in an excel spreadsheet shown in Appendix 11 – Experiments Results Example

(non-Graphical), this is only an example for a few data points of the graph as the spreadsheet is

much larger.

As can be seen on the example results, the list of times is ordered by lowest to highest time,

using an excel function to work out the 1st quartile and 3rd quartile, then using these results, the

interquartile range (3rd – 1st).

From this I have an upper and lower bound, with which, the results furthest away from either

the upper or lower bound are worked out and then manually removed, the spreadsheet then

works out which to remove next, based on the new interquartile range.

R² = 0.9994

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64

A
ve

ra
ge

 t
im

e
to

 r
en

d
er

 f
ra

m
e

(m
s)

Tessellation Level

Test 1 : Tesselation Test (Frame)

Figure 62: Tessellation Experiment Graph (Frame Time)

 P a g e | 59

This is not recalculated in some statistical applications, however in this instance, there is reason

to remove them, as the results should be a very small standard deviation as no other activity

should affect the frame rate.

The setup graph shows the time it took to setup each experiment; this time is mostly influenced

by grid size and triangle size, and therefore did not change, as these variables remained default.

The results of tessellation were as expected, an increase of time taken to render the frame as

tessellation values increased. What was not expected was the extreme difference between the

tessellation levels when exceeding 16.

This seems to follow a O(N2) “big o” curve as shown by the trendline (red) in the graph, big o is

the largest order in an equation, and as such is very approximate, but shows us what we could

expect to see if we were able to use 128 tessellation levels in the future (current maximum 64).

R2 is how well the trendline fits the graph, where 1.0 is the desired result of R2, and as can be

seen in the graph, it is very close to this.

2500

2750

3000

3250

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64

Ti
m

e
to

 s
ta

rt
 r

en
d

er
in

g
fr

am
es

 (
m

s)

Tessellation Level

Test 1 : Tesselation Test (Setup)

Figure 63: Tessellation Experiment Graph (Setup)

 P a g e | 60

Figure 64 (below) shows the change in temperatures and memory used whilst running the

experiments, on most occasions I did not wait long enough for the GPU to fully cool back to its

original temperatures, but at these temperatures no throttling would occur and the experiment

was not how well the graphics card performed at staying cool.

As can be seen, Memory requirements did not change depending on the tessellation, with

exception to GPU memory; where a tessellation value of 1 did not require that extra starting bit

of memory that all the other tessellation values required before dropping back to almost the

same, temperatures were gradually increasing but I feel this was more due to not letting it fully

cool to idle temperatures, before the next experiment.

Figure 64: Temperature and Memory Use (Tessellation)

 P a g e | 61

6.1.2 Triangle Size

The graphs below show the result of changing the triangle size in the grid.

The way the grid works is by having a set size, e.g. 200.0, this isn’t 200 triangles or even 200

quads, the amount of triangles is dependent on the size of the triangles, so for this example, if

the triangle size was 5, the grid would have 40 quads wide, and 40 quads high, which would be

1600 quads and totals 3200 triangles.

There is a big difference between a triangle size of 2 and 5, and will need further testing, I will

also need to test for much smaller triangles (in the decimals).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 5 10 15 20 25 30 35 40 45 50 55

A
ve

ra
ge

 t
im

e
to

 r
en

d
er

 f
ra

m
e

(m
s)

Triangle Size

Test 2 : Triangle Size Test (Frame)

Figure 65: Triangle Size Experiment Graph (Frame)

 P a g e | 62

The frame rate and setup graphs look very similar which I was not expecting, my expectation

was that the frame rate would be less affected by changing the triangle size compared to the

setup time that it took.

But thinking about it more clearly, the smaller the triangle is, and thus the more triangles there

are for the grid size, meaning that the GPU has a greater number of vertices that it must deal

with.

The graphs also show that exceeding a triangle size of 5 does not increase performance much at

all, at least not with a grid size of 200.0, the default for this test.

1000

2000

3000

4000

5000

6000

7000

0 5 10 15 20 25 30 35 40 45 50 55

Ti
m

e
to

 s
ta

rt
 r

en
d

er
in

g
fr

am
es

 (
m

s)

Triangle Size

Test 2 : Triangle Size Test (Setup)

Figure 66: Triangle Size Experiment Graph (Setup)

 P a g e | 63

As the triangle size increased the workload for the GPU dropped and so the temperature for the

GPU dropped as can be seen in the graph, the CPU temperature gradually increased but as with

the previous experiment I believe this was due to not letting the CPU cool to idle temperatures

before I started the next experiment.

The GPU memory was higher and remained higher in the case of the smallest triangle size

tested of 2, this is surprising as I thought the GPU memory may drop as it does with the other

experiment, this could be an anomaly as I am not sure why this would occur, the required

memory was slightly higher when the triangle size was smaller, as expected, as there was more

data that needed to be held to be sent to the GPU.

Figure 67: Temperature and Memory Use (Triangle Size)

 P a g e | 64

6.1.3 Grid Size

As mentioned above in the triangle test, the grid size is a set size, this test will change that set

size to test its effect on performance.

The graphs below show the result of changing this grid size with a default triangle size of 10.

Grid size affected the render time a lot, despite the culling (removing) of triangles that are not

in the visible perspective. The graph is similar to the reducing the size of the triangles graph.

A grid size above 1000 starts to affect the performance greatly as it does with the setup time in

Figure 69 (below).

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
ve

ra
ge

 t
im

e
 t

o
 r

e
n

d
e

r
fr

am
e

 (
m

s)

Grid Size

Test 3 : Grid Size Test (Frame)

Figure 68: Grid Size Experiment Graph (Frame)

 P a g e | 65

Once the grid size reaches 5000, there is a 60 second wait, which to load a complicated game

doesn’t sound unreasonable, but in the case of this relatively simple simulation, is a very long

time.

Again I was not really expecting this result of the graphs looking very similar and was expecting

that the Setup time would be more affected than the frame rate as the same amount of

triangles are actually on screen whereas all the triangles or as many as possible would need to

be loaded into the GPU’s RAM.

A grid size of 5000 with a triangle size of 10 would result in, a 500x500 grid of quads, or 500,000

triangles. Comparatively in terms of number of triangles, that were of size 2 would be the same

using a grid size of 1000.

The graphs below show comparative values where the number of triangles remains the same.

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

55000

60000

65000

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Ti
m

e
to

 s
ta

rt
 r

en
d

er
in

g
fr

am
es

 (
m

s)

Grid Size

Test 3 : Grid Size Test (Setup)

Figure 69: Grid Size Experiment Graph (Setup)

 P a g e | 66

Figure 70: 40 Triangle Comparison Graph

The Z position was adjusted to compensate for the size of the model so that the entire island

was visible.

This graph shows a slight increase when using a larger triangle and grid size, this could be

because there are more pixels to account for when rasterizing (filling in the triangle) despite the

total amount of pixels on the screen being the same.

As the number of samples used was very little (less than 100) we cannot draw a conclusive

result from this graph, and it could just be a coincidence that the graph tends upwards.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

-600

-400

-200

0

200

400

600

800

3483.36 3413.73 3476.33
Setup Times

40 Triangle Comparison

 Triangle Size Grid Size Z Pos Time (ms) Linear (Time (ms))

 P a g e | 67

6.2 Advanced Experiments

The following experiment uses data from normal use of the simulation.

Comparing Tessellation

The graph shown in Figure 71 (below) is ordered (ascending) by time taken to render the frame,

using only non-wireframe results, it is a stacked graph (Sea Tessellation (Grey) is added on top

of the Island Tessellation (Orange)).

Breaking the graph down we can see the following points:

• Lowest time (ms) taken to render the scene is when both Tessellation levels are the
lowest they can be; at a level of 1.

• Tessellation levels of the Sea Plane don’t affect the time taken to render the frame as
much as the Island Plane does despite having nine times the area of the Island Plane,
possibly due to the island mod value which increases the triangles for the island only.

• There is an anomaly in the data where Island Tessellation is at 20 and Sea Tessellation is
at 1, Render time is approximately 30ms.

Figure 71: Tessellation Comparison Graph (Non-Wireframe)

 P a g e | 68

Likewise, in this graph also sorted (ascending) by time taken to render a frame, comparing only

the wireframe results, has a spike just prior to the spike in which the sea tessellation is much

higher than the island tessellation.

My take on this graph is that the wireframe is a lot of detail to render, due to lines that must be

rasterized on screen, this is most in effect when tessellation is high on the larger Sea Plane.

All these results suggest another factor is contributing to the spikes in time where there is no

obvious cause as in the case of Figure 72 (above) where the spikes are circled in red, I will need

to factor in more variables in to the graph in order to check what is the cause of these spikes, I

believe it may be due to zoom level, discussed later in this section.

Below is a set of images showing some different tessellation values.

At a tessellation level of 1 there is slight height variation, this is due to the tessellation

evaluation shader being called and changing the vertex heights despite adding no tessellated

triangles to the patches, the only variable changing in these images is the tessellation level.

Figure 8: Tessellation Comparison Graph (Wireframe)

Figure 73: Tessellation Level 1 (Filled / Wireframe)

Figure 72: Tessellation Comparison (Wireframe)

 P a g e | 69

Already a bit more height variation being added for very little performance cost.

A lot more height variation is added and a few more triangles.

Much more detailed ridges and a lot more triangles.

Figure 74: Tessellation Level 2 (Filled/Wireframe)

Figure 75: Tessellation Level 4 (Filled/Wireframe)

Figure 76: Tessellation Level 8 (Filled/Wireframe)

 P a g e | 70

After a Level of 16 the detail doesn’t gain any significant increase on a model of this size with no

displacement mapping or detailed mountain heightmap to utilize the extra triangles.

The performance starts to plummet at levels 32 and 64.

Figure 78: Tessellation Level 32 (Filled/Wireframe)

Figure 79: Tessellation Level 64 (Filled/Wireframe)

Figure 77: Tessellation Level 16 (Filled/Wireframe)

 P a g e | 71

The following experiments are controlled use of the simulation; however, the data is still

random.

Multiple Textures

This experiment uses the advanced experiments data file to record data but is very simple with

a low number of samples taken.

The reason for this experiment was to see the difference in performance when loading multiple

textures in the program to use inside the shaders.

 Figure 80: Loading Multiple Textures Comparison Graph

The graph shows that the less textures that are being used in the simulation, the quicker the

setup time, my first thought may be that it is the size of the textures that were being loaded

causing the differences in setup time.

I investigated the sizes of these files, and found that this was indeed the case, as is shown

below in the examples.

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1500

1700

1900

2100

2300

2500

2700

2900

3100

3300

3500

Ti
m

e
to

 R
en

d
er

 F
ra

m
e

(m
s)

Se
tu

p
 T

im
e

(m
s)

9 8 7 6 5 3

Textures loaded

Loading Multiple Textures

Setup Time Time (ms)

 P a g e | 72

For example:

The population texture file being removed accounts for the drop from 9 to 8 textures.

Size of File: 195,099 bytes

Effect: Dropped very slightly in setup time (approx. 40ms), heavily in render time

(approx. 0.13ms).

The distance texture file being removed accounts for the drop from 8 to 7 textures.

 Size of File: 16,784,613 bytes

Effect: Dropped in both frame render time (approx. 0.03ms) and setup time

(approx. 200ms).

The hardness texture file accounts for the drop from 7 to 6 textures and is the same size

as the previous, but also is the driving factor behind blending the rock texture into the

grass, so may have affected frame render time with that.

 Size of File: 16,784,613 bytes

Effect: Dropped in both frame render time (approx. 0.08ms) and setup time

(approx. 300ms).

This again isn’t conclusive with the setup times but makes sense that the bigger files take a long

time to load in, this doesn’t account for the 100ms difference between the same sized files.

I would need to repeat this experiment multiple times to get an average setup time which

would be more accurate.

 P a g e | 73

Zooming In

There are three methods of zooming into the model; this is either with the Z-axis or rotating the

model closer to the camera with pitch and yaw.

Figure 81 (below) shows the performance results of zooming in with the Z-axis, it is ordered

from the longest distance zoom of -400 up to 0 where the model is located.

Figure 81: Zooming (Z-Axis) Graph

The render time is quite high due to the other values; the values during the test are as follows

and do not change throughout:

Island tessellation: 16
Sea tessellation: 8
Island Modification: 5
Grid Size: 200
Triangle Size: 5
X, Y: -300,300
Pitch, Yaw: 89, 0
Wireframe: Off
Sea Level: 0.0

-450

-400

-350

-300

-250

-200

-150

-100

-50

0

50

0

5

10

15

20

25

30

35

40

Z
P

o
si

ti
o

n

Ordered by Z Position (ms)

Ti
m

e
to

 R
en

d
er

 F
ra

m
e(

m
s)

Zooming with Z-axis (Advanced Test)

Time (ms) Z Pos

 P a g e | 74

The graph showed us that the further zoomed out from the model that we were, the more time

that it took to render each frame, with exception to a few anomalies this is quite conclusive and

I believe the reason is due to culling of triangles that are not on screen, so do not get processed

by the GPU until they come back into view.

Another way of zooming into the model is using pitch and yaw, Figure 82 (below) shows this,

however, I have used FPS instead of time to render frame in order to make the graph more

visually aesthetic.

Figure 82: Zooming (Pitch and Yaw) Graph

The fixed values are the same as before except for the Z-axis which is now fixed at -150 and the

yaw and pitch will be the variables changed, Pitch is restricted between 0 and 89 and Yaw is

restricted between -5 and 5 and uses the red axis.

Zooming with Pitch and Yaw (Advanced test)

 Pitch FPS Yaw

 P a g e | 75

The graph is ordered using the highest FPS down to the lowest in the clockwise direction.

Some observations of the graph:

• Yaw occasionally didn’t affect the frame time as can be shown in the last quarter of the
graph.

• Generally, the lower the pitch the higher the FPS is.

 P a g e | 76

X and Y Axis

This experiment is used to see whether what is on the screen makes any difference to the

render time.

The graph is ordered by time to render frame (ms).

Some observations of the graph:

• The moving average, using every 5 data points starts off erratic and shows us that is
where the data is most spread.

• These averages flatten out at an X, Y value of (300, 300) approximately, which is exactly
where the model is located in this experiment.

So as the graph is ordered in time to render, we can tell that it takes longer to render when

more of the island is in view, this makes sense, as there are 2 planes of triangles when the

island is in full view.

Figure 83: X and Y Position Graph

 P a g e | 77

Chapter 7: Evaluation

7.1 Meeting the Objectives
I managed to accomplish the aim of dissertation and most of the objectives, even though I feel

the accuracy and graphics of the simulation could be improved.

Research

I did not meet objective 1, whilst researching this topic and CO2 levels, I discovered many more

factors affected climate change and the time it takes for sea levels to rise, so changed the

simulation to a sea level approach rather than time based.

I researched different techniques for rendering a 3D island and its surrounding sea as well as

other topics, meeting objective 2.

Graphical Simulation

The simulation showcases the sea levels rising and the potential impact that this has on a

generated 3D model of the UK with a separate sea entity, meeting the aim of the dissertation

and meeting objectives 3 and 4.

Tangible Data and Results Analysis

Data can be measured and evaluated using the simulation and exporting the data file into excel

to be analysed.

To recap on what has been measured.

• Different levels of tessellation and its effect on frame render time and setup time.

• Triangle sizes and Grid sizes (they became somewhat linked in the way I have
implemented the grid) effect on frame render time and setup time.

• Tessellation differences of 2 planes of triangles on frame render time.

• Multiple textures effect on frame render time and setup time.

• Zooming into the model with z-axis, pitch and yaw and its effect on frame render time.

• Moving x and y axis and its effect on render time.

 P a g e | 78

I was not able to measure land loss, meaning I did not accomplish objective 5, however, with

more time and more experience, I could achieve objective 5.

I managed to achieve and exceed objective 6, measuring more than just different detail levels

of the simulation; I measured a lot of different aspects of the simulation.

7.2 Software Engineering Process

As mentioned previously, I approached this project with a code and fix mindset, this is not the

best approach and doesn’t normally factor much planning or design before starting to code

which led to me not being able to complete an objective relating to the land loss. I do however

feel this was slightly due to inexperience in graphics programming.

7.2.1 Planning and Design

Planning

The Gantt chart was very useful in planning the project, following the Gantt chart to implement

each part prevented me from getting confused about what I had done and what I had to do

next.

By not researching some of the techniques I would need to use ahead of time, i.e. returning

data from the GPU, caused me issues that could have been resolved with this knowledge in

hindsight.

If I were to do the planning stage again, I would factor in the learning curve and although bound

to change, ensure I knew which techniques I would be using, possibly creating several plans

rather than a singular one, so that the plan would be made after all research was done.

Design

I had a pretty clear idea in my head of what I wanted the base structure of the simulation to

look like, so not a lot of thought went into the design stage, this turned out to be a bad idea as I

was adding more ideas or removing ideas than I would have liked.

If I were to do the design stage again, I would take a more structured approach than just

including my ideas into the Gantt chart, such as researching which techniques could be used for

each part of the design, then evaluating the choices I had, before trying to implement them.

 P a g e | 79

7.2.2 Implementation and Testing

Implementation

The progression shown in Chapter 4: Implementation was a good approach; breaking down the

complicated job into smaller jobs helped me see my progress on the simulation and kept me

from getting overwhelmed.

There were a lot of hurdles when it came to develop the simulation, but I persisted with most

of the issues and have learnt a lot in the process.

Testing

As I had used a code and fix approach there were not a lot of issues whilst testing the end

product that needed to be rectified, as any problems that arose were fixed as soon as I had

coded them, it can be quite tricky to debug the GPU as you cannot send information back, or

use breakpoints.

 P a g e | 80

Chapter 8: Conclusion

8.1 Overall Outcome

I am pleased with the overall look of the simulation and found it very interesting analyzing the

results obtained from the performance side of the simulation.

The results that I obtained gave me a lot of insight into the costliest operations and how to

have a good balance of detail in graphics, without impacting the performance too much.

The climate change and sea level modeling side of the simulation did not go as well as I would

have liked, with a lack of knowledge and experience or an inability to come up with an feasible

solution, due to lack of planning on how to implement certain aspects of the simulation, such as

measuring land loss.

The outcome of the simulation shows the impact of sea levels rising on the UK and I believe it to

be somewhat accurate, however feel that the erosion aspect of the simulation could be

improved as well as some of the tessellation-based graphics, especially when inspecting the

island up close.

I believe the results of the different tessellation, grid size, triangle size and the more advanced

testing were done well, they showed me the most costly operations of the simulation, I can use

this knowledge to improve upon the performance and therefore increase the detail that can be

added to the simulation without exceeding an acceptable frame render time.

I was lacking in some research topics, especially relating to past work on real time graphics and

techniques, these would have been helpful in programming the simulation, had I researched

this topic earlier.

 P a g e | 81

8.2 What I Learned

Learning from the mistakes I made is as valuable as learning from the things that went well;

even so I have split them into positives and negatives for clarification.

This does not include my opinions on the simulation as this is mentioned earlier in 7.3

The negatives include what I could have done better on my choice of dissertation subject and

the way I approached it.

Positives

• Graphics Pipeline

Understanding the graphics pipeline is key to any graphics demo, game or simulation. I have

learnt a great deal about how each shader works towards displaying an image on the screen.

I can apply the knowledge that I have gained during this project to other projects I undertake,

with less of a steep learning curve.

• Climate Change

I researched climate change and factors surrounding it that will affect us in the future.

It has put in to perspective what needs to be done to protect the world for future generations

and will hopefully do the same for others reading this dissertation.

• Determination

When things were not going my way, I persevered and eventually completed each task I was

attempting to accomplish, this doesn’t mean everything I did was successful, far from it.

This applies to both managing to succeed in getting the result I was looking for or researching

and deciding it was unfeasible or out of scope for this dissertation to implement that feature.

• Planning and Time Management

Having a final deadline for submission enabled me to set goals and meet them to my best

ability, having a presentable demo and cohesive dissertation by the submission date required

time management and planning, some aspects of this could have been improved however.

 P a g e | 82

Negatives

• Document every stage of development

I was more focused on making the simulation better in one way or another, despite following

my plan, I did not document all the issues I had, and did not take screenshots at the time of

development of each stage.

This led on to when writing Chapter 4: Implementation of this dissertation, finding it difficult to

remember each step I went through to achieve the outcome to be able to explain it easily.

This meant I had to reprogram some of the earlier stages. Using what I had learnt, meant this

was quicker than the first time around of programming, however, was a use of time that could

have been better spent, either improving the simulation, adding more features to it or

explaining the write up of the dissertation more thoroughly.

• Unclear Goals

I didn’t feel as though the dissertation had a specific goal, I wanted to explore lots of graphics

techniques and performance, and on top of that, try to accurately simulate climate change.

And although I learnt a lot, I don’t feel like I have achieved a specific goal even whilst meeting

most of my objectives and meeting my Aim to a certain degree.

If I were to do this again, I would concentrate on one aspect of the graphics such as level of

detail based on distance and how to best implement that whilst maintaining good performance.

To summarize, I tried to tackle more things than I could handle and ended up with just an OK

simulation in most aspects, instead of a visually stunning simulation or an accurate simulation.

• Not my forte

Leading on from unclear aims, at times I felt as though I was doing a geography dissertation,

climate change is a vast subject, with its causes, effects and mitigation tactics.

This was an interesting subject; it was one that I didn’t know much about, which was partly the

reason behind it being a motivation for this dissertation.

It distracted me however, from putting all my efforts into researching graphics and being able

to produce a better graphical demo and dissertation with more technical detail on the

performance and results of the graphics programming.

 P a g e | 83

8.3 Future Work

If I had more time to work on this project I would like to add to and improve upon a few aspects

of the simulation:

Climate change

• Weather

I would like to add a weather system, which changes relating to the average global

temperature, this would require a lot of research into how climate change could affect the

weather, e.g. if this could cause snow storms in the summer months or heat waves in the

winter months for example, it could also shape the landscape such as turning the green

fields of the UK into a desert island.

• How green

Using a time variable combined with a CO2 variable instead of a sea level variable could

change the outcome, depending on how “green” we were.

• Rivers

Rivers would be affected by climate change and sea levels rising and would like to simulate
this by either making the rivers wider, faster or even could be slower depending on the
geological formation around the river.

Graphics

• Erosion

More accurately simulate erosion of the island, using displacement mapping and/or Perlin
noise to texture the land differently as it erodes.

• Textures

The textures although blended well do not look as realistic as hoped and I would like to add
a degree of randomness to them by adding Perlin noise to the patch that the texture was
on, tessellate the patch with this noise to add roughness to rock textures for example when
the camera is quite close to the plane.

Another technique could be to use masking, which is another heightmap generated from

the previous heightmap. (Andersson, 2014)[22]

 P a g e | 84

Very similar to what I attempted with using the hardness map to decide where the rock
texture would be, however this is created procedurally depending on slope calculated using
the heightmap.

• Rivers

Using a separate texture and adding it onto the island for the entire river system of the UK

did not produce the outcome I was looking for; it often did not match up with the grooves

of the mountainous regions where the water should be flowing.

This may have been better as a separate entity.

Performance

• Distance based Tessellation

Changing the tessellation of patches based on the distance from the camera in the scene
would improve performance.

I did have the whole scene change the tessellation based on the Z-axis value, however, this
was not the effect I was looking for despite improving performance, as the user is able to
use pitch to zoom into the island without changing the tessellation I decided to make the
user be able to control the tessellation value instead of this.

 P a g e | 85

References

1. Leahy, S. (2018). Polar Bears Really Are Starving Because of Global Warming, Study Shows.
[online] News.nationalgeographic.com. Available at:
https://news.nationalgeographic.com/2018/02/polar-bears-starve-melting-sea-ice-global-
warming-study-beaufort-sea-environment/ [Accessed 1 Apr. 2019].

2. Khronos.org. (2019). Rendering Pipeline Overview - OpenGL Wiki. [online] Available at:
https://www.khronos.org/opengl/wiki/Rendering_Pipeline_Overview [Accessed 7 Apr. 2019].

3. Vandevenne, L. (2004). Texture Generation using Random Noise. [online] Lodev.org. Available at:

https://lodev.org/cgtutor/randomnoise.html [Accessed 3 Apr. 2019].

4. Flafla2.github.io. (2014). Understanding Perlin Noise. [online] Available at:

https://flafla2.github.io/2014/08/09/perlinnoise.html [Accessed 3 Apr. 2019].

5. En.wikipedia.org. (2019). Heightmap. [online] Available at:

https://en.wikipedia.org/wiki/Heightmap [Accessed 7 Apr. 2019]

6. Widmark, M. (2012). Terrain in Battlefield 3: A modern, complete and scalable system. [online]

Media.contentapi.ea.com. Available at:
https://media.contentapi.ea.com/content/dam/eacom/frostbite/files/gdc12-terrain-in-
battlefield3.pdf [Accessed 1 May 2019].

7. whatsyourimpact.org. (2018). Main sources of carbon dioxide emissions. [online] Available at:
https://whatsyourimpact.org/greenhouse-gases/carbon-dioxide-emissions [Accessed 3 Apr.
2019].

8. Poore, R., Tracey, C. and Williams Jr., R. (2019). Fact Sheet fs002-00: Sea Level and Climate.

[online] Pubs.usgs.gov. Available at: https://pubs.usgs.gov/fs/fs2-00/ [Accessed 5 Apr. 2019].

9. Cumming, V. (2019). This is how far seas could rise thanks to climate change. [online] Bbc.co.uk.
Available at: http://www.bbc.co.uk/earth/story/20160408-this-is-how-far-seas-could-rise-
thanks-to-climate-change [Accessed 6 Apr. 2019].

10. Scientific American. (2019). Could the Oceans Rise Enough to Reverse the Flow of Rivers?.

[online] Available at: https://www.scientificamerican.com/article/could-the-oceans-rise-
enough/ [Accessed 8 Apr. 2019].

11. Shenker, J. (2009). Nile Delta: 'We are going underwater. The sea will conquer our lands'.

[online] the Guardian. Available at:
https://www.theguardian.com/environment/2009/aug/21/climate-change-nile-flooding-
farming [Accessed 1 May 2019].

https://news.nationalgeographic.com/2018/02/polar-bears-starve-melting-sea-ice-global-warming-study-beaufort-sea-environment/
https://news.nationalgeographic.com/2018/02/polar-bears-starve-melting-sea-ice-global-warming-study-beaufort-sea-environment/
https://www.khronos.org/opengl/wiki/Rendering_Pipeline_Overview
https://lodev.org/cgtutor/randomnoise.html
https://flafla2.github.io/2014/08/09/perlinnoise.html
https://en.wikipedia.org/wiki/Heightmap
https://media.contentapi.ea.com/content/dam/eacom/frostbite/files/gdc12-terrain-in-battlefield3.pdf
https://media.contentapi.ea.com/content/dam/eacom/frostbite/files/gdc12-terrain-in-battlefield3.pdf
https://whatsyourimpact.org/greenhouse-gases/carbon-dioxide-emissions
https://pubs.usgs.gov/fs/fs2-00/
http://www.bbc.co.uk/earth/story/20160408-this-is-how-far-seas-could-rise-thanks-to-climate-change
http://www.bbc.co.uk/earth/story/20160408-this-is-how-far-seas-could-rise-thanks-to-climate-change
https://www.scientificamerican.com/article/could-the-oceans-rise-enough/
https://www.scientificamerican.com/article/could-the-oceans-rise-enough/
https://www.theguardian.com/environment/2009/aug/21/climate-change-nile-flooding-farming
https://www.theguardian.com/environment/2009/aug/21/climate-change-nile-flooding-farming

 P a g e | 86

12. Freemaptools.com. (2019). Elevation Finder. [online] Available at:
https://www.freemaptools.com/elevation-finder.htm [Accessed 10 Apr. 2019].

13. Dasgupta, S., Meisner, C. and More (2007). The Impact of Sea Level Rise on Developing
Countries: A Comparative Analysis. [online] Documents.worldbank.org. Available at:
http://documents.worldbank.org/curated/en/156401468136816684/pdf/wps4136.pdf
[Accessed 1 May 2019].

14. Mulligan, J., Ellison, G. and Levin, K. (2018). 6 Ways to Remove Carbon Pollution from the Sky |

World Resources Institute. [online] Wri.org. Available at: https://www.wri.org/blog/2018/09/6-
ways-remove-carbon-pollution-sky [Accessed 25 Apr. 2019].

15. Climate.nasa.gov. (2019). Climate Change: Earth Now. [online] Available at:

https://climate.nasa.gov/earth-now [Accessed 2 Apr. 2019].

16. Vesl.jpl.nasa.gov. (2019). Slowdown in Antarctic Mass Loss from Solid Earth and Sea-Level

Feedbacks Simulation | Sea Level | VESL | JPL | NASA. [online] Available at:
https://vesl.jpl.nasa.gov/sea-level/slr-uplift/ [Accessed 6 Apr. 2019].

17. Sealevel.nasa.gov. (2019). Coastline Retreat From Sea-Level Rise Simulation | Sea Level | VESL |

JPL | NASA. [online] Available at: https://sealevel.nasa.gov/vesl/web/sea-level/slr-eustatic/
[Accessed 8 Apr. 2019].

18. Bunnell, M. (2005). GPU Gems 2. [online] NVIDIA. Available at:

https://developer.nvidia.com/gpugems/GPUGems2/gpugems2_chapter07.html [Accessed 9
Apr. 2019].

19. En.wikipedia.org. (2019). The Wash. [online] Available at:

https://en.wikipedia.org/wiki/The_Wash [Accessed 14 Apr. 2019].

20. Overvoorde, A. (2012). OpenGL - Transformations. [online] Open.gl. Available at:
http://open.gl/transformations#TransformationsinOpenGL [Accessed 16 Apr. 2019].

21. Möller, M. (2019). Open Hardware Monitor - Core temp, fan speed and voltages in a free

software gadget. [online] Openhardwaremonitor.org. Available at:
https://openhardwaremonitor.org [Accessed 19 Apr. 2019].

22. Andersson, J. (2014). Terrain Rendering in Frostbite. [online] Dice.se. Available at:

http://www.dice.se/wp-content/uploads/2014/12/Chapter5-Andersson-
Terrain_Rendering_in_Frostbite.pdf [Accessed 1 May 2019].

https://www.freemaptools.com/elevation-finder.htm
http://documents.worldbank.org/curated/en/156401468136816684/pdf/wps4136.pdf
https://www.wri.org/blog/2018/09/6-ways-remove-carbon-pollution-sky
https://www.wri.org/blog/2018/09/6-ways-remove-carbon-pollution-sky
https://climate.nasa.gov/earth-now
https://vesl.jpl.nasa.gov/sea-level/slr-uplift/
https://sealevel.nasa.gov/vesl/web/sea-level/slr-eustatic/
https://developer.nvidia.com/gpugems/GPUGems2/gpugems2_chapter07.html
https://en.wikipedia.org/wiki/The_Wash
http://open.gl/transformations#TransformationsinOpenGL
https://openhardwaremonitor.org/
http://www.dice.se/wp-content/uploads/2014/12/Chapter5-Andersson-Terrain_Rendering_in_Frostbite.pdf
http://www.dice.se/wp-content/uploads/2014/12/Chapter5-Andersson-Terrain_Rendering_in_Frostbite.pdf

 P a g e | 87

Background Reading

1. En.wikipedia.org. (2019). Shader. [online] Available at: https://en.wikipedia.org/wiki/Shader

[Accessed 3 Apr. 2019].

2. Learnopengl.com. (2019). LearnOpenGL - Textures. [online] Available at:
https://learnopengl.com/Getting-started/Textures [Accessed 18 Apr. 2019].

3. Khronos.org. (2019). OpenGL Wiki. [online] Available at: https://www.khronos.org/opengl/wiki/
[Accessed 6 Apr. 2019].

4. Callery, S. (2019). The Causes of Climate Change. [online] Climate Change: Vital Signs of the
Planet. Available at: https://climate.nasa.gov/causes/ [Accessed 27 Jan. 2019].

5. Scott, M. and Lindsey, R. (2016). Which emits more carbon dioxide: volcanoes or human
activities? | NOAA Climate.gov. [online] Climate.gov. Available at:
https://www.climate.gov/news-features/climate-qa/which-emits-more-carbon-dioxide-
volcanoes-or-human-activities [Accessed 3 Apr. 2019].

6. Glick, D. (2019). The Big Thaw. [online] National Geographic. Available at:
https://www.nationalgeographic.com/environment/global-warming/big-thaw/ [Accessed 6 Apr.
2019].

7. En.wikipedia.org. (2019). Global warming. [online] Available at:
https://en.wikipedia.org/wiki/Global_warming#Greenhouse_gases [Accessed 5 Apr. 2019].

8. Ramónster (2019). How to use QueryPerformanceCounter?. [online] Stack Overflow. Available
at: https://stackoverflow.com/questions/1739259/how-to-use-queryperformancecounter
[Accessed 21 Apr. 2019].

https://en.wikipedia.org/wiki/Shader
https://learnopengl.com/Getting-started/Textures
https://www.khronos.org/opengl/wiki/
https://climate.nasa.gov/causes/
https://www.climate.gov/news-features/climate-qa/which-emits-more-carbon-dioxide-volcanoes-or-human-activities
https://www.climate.gov/news-features/climate-qa/which-emits-more-carbon-dioxide-volcanoes-or-human-activities
https://www.nationalgeographic.com/environment/global-warming/big-thaw/
https://en.wikipedia.org/wiki/Global_warming#Greenhouse_gases
https://stackoverflow.com/questions/1739259/how-to-use-queryperformancecounter

 P a g e | 88

Images Used

Figure 1: Inundation of Water

https://climate.nasa.gov/interactives/climate-time-machine

Figures 2,3: Gannt Charts

https://www.teamgantt.com

Figure 4: OpenGL Rendering Pipeline

 https://www.khronos.org/opengl/wiki/File:RenderingPipeline.png

Figure 5: Example of Terrain Tessellation in OpenGL

https://docs.nvidia.com/gameworks/content/gameworkslibrary/graphicssamples/opengl_sampl

es/images/terraintessellation-screenshot_thumb_700_0.jpg

Figure 6: Displacement Map Example (Detailed Terrain)

https://media.contentapi.ea.com/content/dam/eacom/frostbite/files/gdc12-terrain-in-battlefield3.pdf

Figure 7: The Greenhouse Effect

https://www.niwa.co.nz/sites/niwa.co.nz/files/styles/large/public/sites/default/files/images/im

ported/0007/73447/Greenhouse_effect2_0.jpg?itok=Wd-IRLRk

Figure 8: Carbon Cycle

https://www.researchgate.net/profile/Francesco_Tubiello/publication/323696018/figure/fig6/A

S:560281676980225@1510592969615/Schematic-representation-of-the-overall-perturbation-

of-the-global-carbon-cycle-caused-2.png

Figure 9: Fossil Fuel Emissions

 https://www.climate.gov/sites/default/files/volcano-v-fossilfuels-1750-2013-620.png

Figure 10: Flooding image

https://www.northnorfolknews.co.uk/polopoly_fs/1.3086059!/image/3405277030.jpg_gen/deri

vatives/landscape_490/3405277030.jpg

Figure 11: Elevation Map (Nile Delta)

 https://www.freemaptools.com/elevation-finder.htm

Figure 12: Egypt Impact of Sea Level Rising

 http://documents.worldbank.org/curated/en/156401468136816684/pdf/wps4136.pdf

https://climate.nasa.gov/interactives/climate-time-machine
https://www.teamgantt.com/
https://www.khronos.org/opengl/wiki/File:RenderingPipeline.png
https://docs.nvidia.com/gameworks/content/gameworkslibrary/graphicssamples/opengl_samples/images/terraintessellation-screenshot_thumb_700_0.jpg
https://docs.nvidia.com/gameworks/content/gameworkslibrary/graphicssamples/opengl_samples/images/terraintessellation-screenshot_thumb_700_0.jpg
https://media.contentapi.ea.com/content/dam/eacom/frostbite/files/gdc12-terrain-in-battlefield3.pdf
https://www.niwa.co.nz/sites/niwa.co.nz/files/styles/large/public/sites/default/files/images/imported/0007/73447/Greenhouse_effect2_0.jpg?itok=Wd-IRLRk
https://www.niwa.co.nz/sites/niwa.co.nz/files/styles/large/public/sites/default/files/images/imported/0007/73447/Greenhouse_effect2_0.jpg?itok=Wd-IRLRk
https://www.researchgate.net/profile/Francesco_Tubiello/publication/323696018/figure/fig6/AS:560281676980225@1510592969615/Schematic-representation-of-the-overall-perturbation-of-the-global-carbon-cycle-caused-2.png
https://www.researchgate.net/profile/Francesco_Tubiello/publication/323696018/figure/fig6/AS:560281676980225@1510592969615/Schematic-representation-of-the-overall-perturbation-of-the-global-carbon-cycle-caused-2.png
https://www.researchgate.net/profile/Francesco_Tubiello/publication/323696018/figure/fig6/AS:560281676980225@1510592969615/Schematic-representation-of-the-overall-perturbation-of-the-global-carbon-cycle-caused-2.png
https://www.climate.gov/sites/default/files/volcano-v-fossilfuels-1750-2013-620.png
https://www.northnorfolknews.co.uk/polopoly_fs/1.3086059!/image/3405277030.jpg_gen/derivatives/landscape_490/3405277030.jpg
https://www.northnorfolknews.co.uk/polopoly_fs/1.3086059!/image/3405277030.jpg_gen/derivatives/landscape_490/3405277030.jpg
https://www.freemaptools.com/elevation-finder.htm
http://documents.worldbank.org/curated/en/156401468136816684/pdf/wps4136.pdf

 P a g e | 89

Figures 13,14: Search Topic Trends

https://trends.google.com/trends/explore?date=all&q=%2Fm%2F0gx2d,%2Fm%2F0d063v,%2F

m%2F0cs9q

Figure 15: Satellite Measurements

 https://climate.nasa.gov/earth-now

Figure 16: Antarctica Simulation

 https://vesl.jpl.nasa.gov/sea-level/slr-uplift/

Figure 17: Sea Level Simulation

 https://sealevel.nasa.gov/vesl/web/sea-level/slr-eustatic/

Figure 19: Height Map

 https://i.imgur.com/V0txo.jpg

Figure 22: Ground Strength Map

 https://www.bgs.ac.uk/products/groundConditions/images/strength.jpg

Figure 23: Population Map

http://www.geog.leeds.ac.uk/papers/98-8/pop.gif

Figure 24: Textures

Sand:

https://previews.123rf.com/images/wutichaistudio/wutichaistudio1706/wutichaistudio1706003

46/80373036-golden-sand-texture-background-h-i-g-h-r-e-s-o-l-u-t-i-o-n.jpg

Grass:

 https://i.pinimg.com/564x/ef/23/8b/ef238b5a703395ae88807b1e5eb4c5ad.jpg

Rock:

http://wdc3d.com/wp-content/uploads/2010/04/stone_1_2048x2048.jpg

Snow:

http://cdn.hasshe.com/img/s/_0xatQ5zSNt_oeEo2d4yEAHaHa.jpg

Water:

https://i.stack.imgur.com/nRHPu.png

https://trends.google.com/trends/explore?date=all&q=%2Fm%2F0gx2d,%2Fm%2F0d063v,%2Fm%2F0cs9q
https://trends.google.com/trends/explore?date=all&q=%2Fm%2F0gx2d,%2Fm%2F0d063v,%2Fm%2F0cs9q
https://climate.nasa.gov/earth-now
https://vesl.jpl.nasa.gov/sea-level/slr-uplift/
https://sealevel.nasa.gov/vesl/web/sea-level/slr-eustatic/
https://i.imgur.com/V0txo.jpg
https://www.bgs.ac.uk/products/groundConditions/images/strength.jpg
http://www.geog.leeds.ac.uk/papers/98-8/pop.gif
https://previews.123rf.com/images/wutichaistudio/wutichaistudio1706/wutichaistudio170600346/80373036-golden-sand-texture-background-h-i-g-h-r-e-s-o-l-u-t-i-o-n.jpg
https://previews.123rf.com/images/wutichaistudio/wutichaistudio1706/wutichaistudio170600346/80373036-golden-sand-texture-background-h-i-g-h-r-e-s-o-l-u-t-i-o-n.jpg
https://i.pinimg.com/564x/ef/23/8b/ef238b5a703395ae88807b1e5eb4c5ad.jpg
http://wdc3d.com/wp-content/uploads/2010/04/stone_1_2048x2048.jpg
http://cdn.hasshe.com/img/s/_0xatQ5zSNt_oeEo2d4yEAHaHa.jpg
https://i.stack.imgur.com/nRHPu.png

 P a g e | 90

Appendix

Appendix 1 – Sea Level Rising

Obtained (3rd November 2018,

https://www.cresis.ku.edu/sites/default/files/Research/Maps/NorthernEurope/JPG/northern_europe_1to6.jpg)

https://www.cresis.ku.edu/sites/default/files/Research/Maps/NorthernEurope/JPG/northern_europe_1to6.jpg

 P a g e | 91

Appendix 2 – River Maps (pre-edit)

Obtained (26th February 2019, https://lizardpoint.com/geography/images/maps/england-wales-rivers-

highlighted.gif , https://lizardpoint.com/geography/images/maps/scotland-rivers-highlighted.gif)

https://lizardpoint.com/geography/images/maps/england-wales-rivers-highlighted.gif
https://lizardpoint.com/geography/images/maps/england-wales-rivers-highlighted.gif
https://lizardpoint.com/geography/images/maps/scotland-rivers-highlighted.gif

 P a g e | 92

Appendix 3 – Population Map (Greyscale)

 P a g e | 93

Appendix 4 –Two Triangle Quad Planes Code

 P a g e | 94

Appendix 5 – Grid of Quads Code

 P a g e | 95

Appendix 6 – Fragment Shader Code

 P a g e | 96

Appendix 7 – Updated Fragment Shader Code

 P a g e | 97

Appendix 8 – Sea Tessellation Shader Code

 P a g e | 98

 Appendix 9 – Test Plan

Test
No

Test Name/
Description

Test Purpose Expected Result Actual Result Solution - if
Applicable

1 Running
program

Ensure the
program starts

The program should
run.

Program Runs. N/A

2 Tessellation
variable (sea)

Correct
changing of
tessellation
for the sea.

Pressing O/K should
increase/decrease
the tessellation by 1.

Tessellation variable
(sea)
increased/decreased
however was too fast.

Change the
button down to
button pressed.

3 Tessellation
variable
(island)

Correct
changing of
tessellation
for the island.

Pressing P/L should
increase/decrease
the tessellation by 1.

Tessellation variable
(island)
increased/decreased
however was too fast.

Change the
button down to
button pressed.

4 X-Axis and Y-
Axis Camera
Control

Check left,
right up down
controls.

W – Up
A – Left
S – Down
D – Right

WASD works as
expected.
Speed changes
depending on FPS.

N/A
(Could change
Speed depending
on FPS)

5 Z-Axis
Camera
Control

Check Zoom
in/out
Controls work
as expected.

Q – Zoom in Slow
Z – Zoom out Slow
Scroll(Up/Down)
faster zooming.

Q Z and Scrolling works
as expected.
Speed changes
depending on FPS.

N/A
(Could change
Speed depending
on FPS)

6 Pitch and
Yaw Camera
Control

Check Pitch
and Yaw
controls work
as expected.

Holding Left mouse
and dragging should
change pitch and
yaw.

Pitch and yaw changed
as expected, however
model could be lost if
too far.

Limit the values
that the pitch and
yaw can be
between.

7 Sea Level
variable

Check sea
level rises and
drops.

Pressing UP/Down
should change cause
sea level to
rise/drop.

Works as expected,
although issue with
tessellated water
texture noticed.

Water texture
contributes to z-
axis value during
tessellation,
remove.

8 Accuracy of
FPS and
Time/Frame

Check
consistent
FPS, and its
accuracy.

Using a thread sleep
of 1000ms should
result in 1000ms
timer.

The FPS is relatively
stable and the timer
results were accurate to
the sleep time.

N/A

9 Wireframe Ensure
wireframe
mode worked.

Pressing F should
toggle between
wireframe and filled
mode.

Wireframe toggled
between on and off.
FPS decreased when on.

N/A

10 Population
Overlay

Ensure
Population
mode worked.

Pressing F1 should
toggle the
population overlay
on and off.

Population overlay
toggled on and off,
colour not visible
enough and blends with
textures.

While adding the
to the red value
of the fragment,
the green and
blue value needs
to be reduced.

 P a g e | 99

Appendix 10 – Experiment Tables

Tessellation Test with default values.

Test
Number

Grid Size Triangle
Size

Island Triangle
Mod

Sea Level Sea
Tessellation

Island
Tessellation

1.0 200 10 2 0 1 1

1.1 200 10 2 0 2 2

1.2 200 10 2 0 4 4

1.3 200 10 2 0 8 8

1.4 200 10 2 0 16 16

1.5 200 10 2 0 32 32

1.6 200 10 2 0 64 64

Triangle Size Test with Tessellation values of 1 (Island mod cant produce value less than 1)

Test
Number

Grid Size Triangle
Size

Island Triangle
Mod

Sea Level Sea
Tessellation

Island
Tessellation

2.0 200 2 2 0 1 1

2.1 200 5 2 0 1 1

2.2 200 10 2 0 1 1

2.3 200 25 2 0 1 1

2.4 200 50 2 0 1 1

Grid Size Test with Tessellation values of 1

Test
Number

Grid Size Triangle
Size

Island Triangle
Mod

Sea Level Sea
Tessellation

Island
Tessellation

3.0 100 10 2 0 1 1

3.1 250 10 2 0 1 1

3.2 500 10 2 0 1 1

3.3 1000 10 2 0 1 1

3.4 5000 10 2 0 1 1

 P a g e | 100

Appendix 11 – Experiment Results Example (non-graphical)

